0-7803-7761-3/03/817.00 ©2003 [EEE

HARDWARE ARCHITECTURE DESIGN FOR VARIABLE BLOCK SIZE MOTION
ESTIMATION IN MPEG-4 AVC/JVT/ITU-T H.264

Yu-Wen Huang, Tu-Chih Wang, Bing-Yu Hsieh, and Liang-Gee Chen

DSP/IC Design Lab
Graduate Institute of Electronics Engineering and
Department of Electrical Engineering, National Taiwan University
{yuwen, eric, bingyu, lgchen} @video.ce.ntu.edu.tw

ABSTRACT

Variable block size motion estimation is adopted in the new video
coding standacd, MPEG-4 AVC/IVT/ATU-T H.264, due to its su-
perior performance compared to the advanced prediction mode in
MPEG-4 and H.263+. In this paper, we modified the reference
software in a hardware-friendly way. Our main idea is to convert
the sequential processing of each 8x§ sub-partition of a macro-
block into parallel processing without sacrifice of video quality.
Based on our algorithm, we proposed a new hardware architec-
ture for variable block size motion estimation with full search at
integer-pixel accuracy. The features of our design are 2-D pro-
cessing element array with 1-D data broadcasting and 1-D partial
result reuse, parallel adder tree, memory interleaving scheme, and
high utilization. Simulation shows that our chip can achieve real-
time applications under the operating frequency of 64.11MHz for
720x480 frame at 30 Hz with search range of [-24, +23] in honi-
zontal direction and [-16, +15] in vertical direction, which requires
the computation power of more than 50 GOPS.

1. INTRODUCTION

Video coding, experts from SO MPEG-4 Advanced Video Cod-
ing (AVC) and ITU-T H.264 group form the Joint Video Team
{JVT). The new techniques include motion estimation (ME) with
variable block sizes and multiple reference frames, intra predic-
tion, 2x2 and 4x4 transform, adaptive block size transform, non-
uniform quantization, CAVLC, CABAC, in-lcop deblocking filter,
and more [1]. Compared to MPEG-4 advanced simpte profile, up
to 50% of bit-rate reduction can be achieved. However, the re-
quired computation is more than four times higher. Therefore,
hardware acceleration is a must for reai-time applications, espe-
cially for ME, which is the most computationally intensive part.

Many ME architectures have been proposed for previous stan-
dards. Only one 16x16 block and four 8x8 blocks (advanced pre-
dictton mode in MPEG-4 simple profile and H.263+) could be used
for motion compensation. They cannot fully support the seven
kinds of block size (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4)
in H.264. In addition, the reference software of H.264 [2) adopts
sequential processing of each 8x8 sub-partition. The data depen-
dency between the sub-partitions makes parallel processing impos-
sible. Thus, we must start the architecture design of variable block
size ME for H.264 at the algorithmic level,

In this paper, we modify the reference software to let the algo-
rithm more suitable for hardware. In Section 2, we first teview the

—
+. Comnpute inira 4x4 caat in Wop right 8:8
2. Gompuls inter 4x4 coa| in Iop gt b
9. Coripita inle? 84 cosl i 1op aght 838
4, Computs intar 88 coal i dop right Bx8
5. Mode ciacision for top night 8x8

_¥

1. Comgyrie inira Axd co#l i botiomn Wit 2x8
2. Compum niar Axd cost 0 botom el txe
3. Compute inar Axd cot in botson N BxN
4. Compute nter BxB cost ¥ boltor Wh BxB
5. Mode dacision fof brottom bt §xB

1, Computta jotrm dxé cost in lop et B8

2. Computs inlar 4x4 cost in top leh &xd
Currant "‘:“’;‘h—‘-j 3. Cormputs a¥er Bxd coit in top el xl
Saarch a 4. Compute mter &8 coalin top b Bx8
5. Mode decision for ‘op lah 8B

1, Gompute intra 4xd st in poltom right Bx8
2. Computs intac 4xd ooz i pattom nght e
3. Compuis inler Bxé cont in boltom right 8x8
4. Computa wriaer BxE cost in boflom right 8x3
. Mode décision fof bottom right 8x8

—

\H\ —_{On. intra a1 § madke.
1. Compute intra 16x15 cosl b 1Ex16 Sixtesn intradzd modas

2, Compyté intra dxd cotin 18x18

Onia inter16x16 MY
2. Compute inter 16518 coatin 182168 -
3. Compuis lar 16X castin YEX18 T ittmrt 6X8 MY One M WY
4. Computa imer Bx3E cowl in 18x14 InterhiB Two interdx (6 Mys Two interficd Wy
5. blode decision for 1x16 Eours
4.0 e sida eormation of M8 Ut nterfix® Mvs Two ntrdx8 MV

Four Bx8 sub-partitx Four intrudxd modes

Figure 1: Prediction flow in H.264 software.

prediction flow in JM4.0d. In Section 3, we present our algorithm
with experimental results of coding performance. Next, our archi-
tecture, as well as the simulation results and comparison, will be
described in Section 4 and Section 5, respectively. Finally, Saction
6 gives a conclusion.

2. PREDICTION FLOW IN H.264 SOFTWARE

Figure 1 shows the prediction flow of a 16x16 macro-block (MB)
in H.264 software. The top left 8x8 block is first processed and
followed by the top right 8x8, bottom left 8x8, bottom right 8x8,
and 16x16. The mode decision considers not only the sum of abso-
lute difference (SAD) {2-D Hadamard transformed for intra modes
and sub-pixel ME) but also the exact cost of side information. The
entropy coding of intra modes depends on the context produced by
the left and top neighbors. Besides, the intra prediction of a block
cannot get the correct predictor until the neighboring blocks are
quantized and then reconstructed. Moreover, the motion vectors
(MVs) are medium predicted by the left, top, and top right neigh-
bors. The cost function can be computed only after the modes
of neighboring blocks are determined. Obviously, the methods in
H.264 software cannot be used in hardware implementation be-
cause of the inevitable sequential processing resulted from the data
dependency of neighboring blocks. The main problem comes from
the “exact” cost of side information. In fact, it is the SAD, not the
cost of side information, that dominates the total cost. It is not
necessary to exactly calculate the cost of side information.

11-796

Curmert MB dem MV predicior by lop belt,
Sl Srea dabs 'op, and 10 right MB .
the Finurmuan SADs Hadl-pixml and quarser-pixe]
and MVe among ol search rafiomant ME I 41 blocka, = .
positions &l inlerper scourcy At MYa BAD i 2-D riacemand H pho
Hor 41 blacks [one 18x18, two MY costs are] or
1638, two Bx18, four 8x8, 1 macium. preciched by the lop] CmMpeaton,
wighl 84, gt 4x8, sixtesn loh, o, and top fight M for | e
axd) e of sub-blocks. H ean,
41 Inter coats : vena
a4l WvVe) Quantization,
prediction = tarmlorm,
|mmsxie and 1 intra 18218 cost Ivares
Intrad s prackeion Leing 10 irrmd coatt | Sequenial mode deciionfor |] | sntmey cong,
stigral Frarma data inskead of aMB 1 .
| reconatnctad data :
t
! 1
Bk ik MB-lpvel task
PipeAning Pipaiining

Figure 2: Medified prediction flow.

w0 V5 s
‘ .

cn | ciz s10 [st1; ,5@»{2 s13
520 17| sn
N

Reference Frame

Current Frame

Figure 3: Overlapped search range of adjacent MBs. Each square
is 16x16 and assume search range is {-16, +16].

3. PROPOSED HARDWARE-ORIENTED ALGORITHM

Figure 2 shows the proposed hardware-oriented prediction flow.
Full search ME is performed at integer search positions and sub-
pixel refinement is next executed. The search range center is deter-
mined by the MV predictor in H.264 software, but we use (0, 0) as
center in order to share the overlapped search area of adjacent MBs
and reduce the memory transfer from external RAM to on-chip
SRAM, as shown in Fig, 3. During integer-pixel ME, we compute
the SAD of 41 blocks without MV cost. Next, the sub-pixel re-
finement is performed around the best integer search position of
41 blocks. At the refinement stage, the MV cost is considered.
However, we do not use the exact cost but an approximation. The
exact MV predictor is replaced by the medium of the MVs of the
top left, tep, and top right MB for all kinds of sub-blocks, as shown
in Fig. 4. For example, the exact MV cost of the 4x4 C22 block is
related to the MVs of C12, C13, and C21. During the ME phase,
we change the MV prediclors of all the 41 blocks to the medium of
MV0, MV1, and MV2 in order to facilitate the parallel processing
of the 41 blocks. Of course after the mode decision is finished, the
entropy coding module must calculate the exact MV predictors in
the sequential order defined by standard, but this will not cause the
processing bottleneck. As for the intra prediction, we use origi-
nal frame data, instead of the reconstructed pixels of neighboring
blocks, as predictors. At high bit-rates, the original frame pixels
are very close 1o the reconstructed pixels, so the mode decision is
still correct. At low bit-rates, the differences may become signif-
icant. We proposed an error term to model the differences so that
the mode decision will not go wrong. The readers can refer to 3]
for more details.

The experimental results of our modifications are shown in
Fig. 5 The test conditions are I-P-P-P-P-P-P..., one reference frame,
CAVLC, low-complexity mode decision, search range [-16, +16],

o MV My2
MB \ [}
Boundary \l Boundary
t&uz A3
Mva > Predicios for C22 = medium{MV0, MV, MV2}
21 |C22
MB L}
Bouncary Boundary

Figure 4: MV predictor used for the 41 blocks in current MB dur-
ing the ME phase.

an
)

40
E
38
&
1
o
X ?233 —JMaod |
z7 — Modified i) — Modified
26 i 20
P 28
0 200 400 60G 800 1000 1200 O 200 400 800 BOO 1000 1200 1400
Bt Rats {Kbpe) Bit Rale (Kbps)
(a) (b)
Wabile Calendar CIF 30Hz Siont CIF 30HE
P aentrisnaianatitieontir S,
az
Y
€ g
28 i3
FEi & —
26 —adod < [~md s §
:i — Modified |~ Modifieg;
23 A " i
0 200 400 600 80D 100D 1200 1400 L1 400 600 800 1000 1200
Bit Pate (Kbpa) Bit Rate (Kbos)
© (d)
Stetan CIF 30Hz Tapte Tennis CIF 30Hz
34 :; r —_— -
b Er]
32 38
g2 a3
g2 ek
2 34
z w3 |
bl 2% = Modfisd]
25 28
2 z
Q 400 600 BOD 1000 1200 0 200 400 800 80O 1000 200
Bt Rals (Kbpa) Bit Flate {itbps)
(e))]

Figure 5: The rate distorticn curves of various standard sequences
generated by JM4.0d and our modified software.

Stelen GIF J0HZ, Saarch Rat [- 18, 18] QP=30 Siwlan CF 30H2, Search Range |- 14, +16], QP30

140000 =
i owch range cenler of 0, O V2000 | IR TAOOR CHIR L (0.5)
¢ 100 [| _ wwarch ranos ceniee ol WV pradiclors| | |— stascn range canier st 1y A
E " N ’,F‘. 100000 al Y
Al 1 20600 . |
5 ® ; L! é 0000 ol
g “ o0
= 20000
a] o
L 50 00 150 200 0 300 [5 o0 150 200 250 300
Frarmm Mamber Frama Humbar
{a) (b)

Figure 6: (a) Number of intra MBs v.s. frame; (b) Number of bits
required v.s. frame.

-797

Figure 7: Proposed architecture for integer ME.

and Hadamard transform opened. Six standard sequences are tested
from low bit-rates to high bit-rates. Qur modifications result in al-
most no PSNR degradation except for Stefan. This is because the
true motion vectors of Stefan from frame #175 1o #195 and from
frame #230 10 #280 are larger than the search range. Here, we can
see the significant gain when the search range center of a MB is
located at the MV predictor. Nevertheless, as we stated before, if
we located the search range center at (0, 0), take search range of
{-16, +16] as an example, the memory transfer of the overlapped
2/3 search area from the external RAM to on-chip SRAM can be
saved for adjacent MBs. Therefore, in the view point of hardware
engineers, we suggest to increase the search range to [-24, +24] or
larger if the extra cost of on-chip SRAM is affordable. Note that
in this case, the saving of system bus bandwidth is 75% because
there are 3/4 overlapped search area for two adjacent MBs. If the
design target is low cost, we suggest to solve this problem at the
algorithmic level. That is, we can adjust the search range center
by the number of intra MBs in the previous frame. If the true MVs
are beyond the search range, many MBs will be intra-coded. We
can observe this situation in Fig. 6. If the number of intra MBs
in previous frame is smaller than a threshold, we can use (0, 0) as
search range center and reuse the overlapped search area. Other-
wise, we can reload the whole search area that are centered at the
MYV predictor if the real-time requirements still can be achieved.

4. HARDWARE ARCHITECTURE

In this section, we will describe our architecture for the integer ME
module, which is the most computationally intensive part in the en-
coder. Full search scheme is adopted because of its simplicity and
regularity. The SADs of the 41 blocks in a search position are com-
puted in parallel in one clock cycle. Our architecture is illustrated
in Fig. 7. Each circle stands for a processing element (PE). Each
8-bit pixel in the current MB is stored in the corresponding PE.

In each cycle, 16x1 8-bit search area pixels are inputted, and each
pixel is broadcasted to 1x16 PEs. Every PE computes the absolute
difference between the current MB pixel and the search area pixel.
Each rectangle that contains 4x1 PEs is responsible for calculating
the sum of 4x1 absclute differences. The 4x1 sum is then passed
to the right. The rectangle shaded with slash lines adds the 4x1
sum from its left side and the result from top. The added result is
latched in the register. The rest small rectangles are registers and
are used as delay lines. In this way, the sixteen 4x4 SADs can be
computed in one cycle. The eight 8x4 SADs, eight 4x8 SADs, four
8x8 SADs, two 16x8 SADs, two 8x16 SADs, and one 16x16 SAD
can also be easily computed in the same cycle by an adder tree.

An example of the detailed data flow is shown in Fig. 8. As-
sume the search range is [-16, +16], the search area is 48x48, and
each square stands for 16x16 search area. After the current MB
are loaded into each PE, 16x1 search area pixels are inputted in
each cycle. At cycle 0, the left 16x1 pixels on the row O in the
search area are inputted. Then, the left 16x1 pixels on row 1 are
inpulted at cycle 1, and go on. At cycle 15, all the candidate block
data of search position (-16, -16) have been broadcasted to the PE
array, and the SADs of 41 blocks at search position (-16, -16) are
calculated in parallel. The SADs of search position (-16, -15) -
(-16, +16) will be available at cycle 16 to 47, respectively. The
rest search positions can be traced by analogy. In order to output
the 16x1 pixels in parallel, we have to store the search area data in
different 16 on-chip SRAM modules.

As you can see, the utilization of the previous data flow cannot
achieve 100%. When the scarch position is changed in the hori-
zontal direction, extra 15 cycles are required to load the candidate
block data. The advanced data flow is shown in Fig. 9. Now the
PE array needs two ports of 16x1 search area data. The top 48x32
search area data are stored in 16 on-chip SRAM modules, and the
bottom 48x16 search area are stored in another 16 on-chip SRAM
modules so that 32 search area pixels can be cutputted in one cycle.

o-798

11
f%ﬁ

Cycle © Cycle 15

Cycle 16-47 Cycled8-96 Cycle 1535 1583

Figure 8: Basic daia flow.

Cycle 0~ 32 Cycle 33 Cycle 34 -47 Cycle 48-65 Cycle 66-80

Figure 9: Advanced data flow.

At cycle 0 to 32, the new data flow is the same as the previous one.
At cycle 33, not only the original 16x] pixels in Fig. 8 but also
the additional 16x1 pixels (at cycle 48 of the previous flow) are in-
putted to the PE array. Atthis time, the 16x1 PEs on row 0 (the top
16x! PEs in Fig. 7) should choose the new additional 16x1 pixels
while the rest 16x15 PEs on row 1-15 should choose the original
16x1 data. Atcycle 34 to 47, the SADs of search positions (-16,
+2) - (~16, +16} are computed, and in the mean time, the search
area data required for search position (-15, -16) are also inputted
to the PE array. During cycle 33-47, the 16x1 PEs on each row
should select the proper 16x1 search area data in order to get the
correct results. In this way, when the search position is changed in
the horizontal position, no bubble cycles exist so that the through-
put can be increased. When ping-pong mode current MB buffers
are implemented, the utilization is 100%, and the required cycles
for each MB is 1089. In sum, our architecture is a 2-D systolic
array with 1-D data broadcasting and 1-D partial result reuse (4x1
SADs). Sixteen 4x4 SADs are generated by the PE array, and a
parallel adder tree computes the rest SADs of larger block sizes.

5. IMPLEMENTATION

Our design goal is listed as follows: 720x480 frame size, 30 frames
per second, search range {-24, +23] in the horizontal direction and
{-16, +15] in the vertical direction. Our design is described by
Verilog HDL and synthesized by SYNOPSYS Design Analyzer
with AYANT! 0.35um 1P4M cell library. The backend tool we
used is CADENCE Silicon Ensemble.

Figure 10 shows our chip layout. We did not use ping-pong
mode current MB buffers in order to save chip area. Therefore,
some extra cycles are needed to load the current MB data. The
utilization of (he PE array is 97%, and the required frequency is
64.11MHz. The critical path constraint is set to 15ns. We use
sixteen 128x8 SRAMSs to store the upper 64x32 scarch area data
and another sixteen 64x8 SR AMs (o store the bottom 64x 16 search
area data. The chip specifications are shown in Table 1. The total
gate count is about 106K. The PE array requires 64K gates, the
current MB buffer requires 15K gates, and the rest gates are spent
on the 41 comparators to find the minimum SADs, registers to hold
the minimum SADs and corresponding MVs, and control ¢ircuits.

Figure 10: Chip layout.

Table 1: Chip Specifications.

Process TSMC 1P4M 0.35um
Area 5,056 um x 5,056 um
Package 128 CQFP

On-chip memory 24,576 bils

Gate count 105,575

Maximum frequency 66.67 MHz

737.32 mW @ 66.67 MHz
horizontal [-24, +23], vertical {-16, +15]
720x480 @ 30 Hz

Power consumption
Search range
Processing capability

6. CONCLUSION

We proposed a hardware architecture of variable block size motion
estimation dedicated for H.264. The architecture design begins
with (he analysis of the reference software. We removed the data
dependencies that prevents parallel processing and MB pipelining.
The architecture contains a PE array, which is a 2-D systolic ar-
ray with 1-D data broadcasting and 1-D partial result reuse, and a
parallel adder tree to generate the SAD of larger block sizes based
on 4x4 SADs. Our memory access scheme can result in 100% uti-
lization of PE array. Real-time applications of 720x480 frame at
30Hz can be achieved only under 64.11MHz,

7. FUTURE WORK

We are now establishing the cell-based design flow of 0.25um
technology. We plan to integrate the current design together with
quarter-pixel ME and intra prediction using 0.25 um technology.

8. REFERENCES

[1} Committee Draft of Joint Video Specification (ITU-T Rec.
H.264 and ISO/IEC 14496-10 AVC), July, 2002,

[2] Joint Video Team (JVT) software JM4.0d, August, 2002.

[3]1 T.C. Wang, Y.W. Huang, H.C. Fang, and L.G. Chen, “Perfor-
mance analysis of hardware oriented algorithm medifications
in H.264,” submitted to [EEE International Conference on
Acoustics, Speech, and Signal Processing, 2003.

o-79%

