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ABSTRACT 

Variable block size motion estimation is adopted in the new video 
coding standard, MPEG-4 AVCIIVTIITU-T H.264, due to its su- 
perior performance compared to the advanced prediction mode in 
MPEG-4 and H.263+. In this paper, we modified the reference 
software in a hardware-friendly way. Our main idea is to convert 
the sequential processing of each 8x8 sub-partition of a macro- 
block into parallel processing without sacrifice of video quality. 
Based on our algorithm. we proposed a new hardware architec- 
ture for variable block size motion estimation with full search at 
integer-pixel accuracy. The features of our design are 2-D pro- 
cessing element array with I-D data broadcasting and I-D partial 
result reuse, parallel adder tree, memory interleaving scheme, and 
high utilization. Simulation shows that our chip can achieve real- 
time applications under the operating frequency of 64.11MHz for 
720x480 frame at 30 ti2 with search range of [-24, +23] in hori- 
zontal direction and [-16, +I51 in vertical direction, which requires 
the computation power of more than 50 GOPS. 

1. INTRODUCTION 

Video coding expens from I S 0  MPEG-4 Advanced Video Cod- 
ing (AVC) and ITU-T H.264 group form the Joint Video Team 
(JVT). The new techniques include motion estimation (ME) with 
variable block sizes and multiple reference frames, intra predic- 
tion, 2x2 and 4x4 transform, adaptive block size transform, non- 
uniform quantization. CAVLC, CABAC, in-loop deblocking filter, 
and more [I]. Compared to MPEG-4 advanced simple profile, up 
to 50% of bit-rate reduction can be achieved. However, the re- 
quired computation is more than four times higher. Therefore, 
hardware acceleration is a must for real-time applications, espe- 
cially for ME, which is the most computationally intensive pan. 

Many ME architectures have been proposed for previous stan- 
dards. Only one 16x16 block and four 8x8 blocks (advanced pre- 
diction mode in MPEG-4 simple profile and H.263+) could he used 
for motion compensation. They cannot fully support the seven 
kinds of block size (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4) 
in H.264. In addition, the reference software of H.264 121 adopts 
sequential processing of each 8x8 sub-partition. The data depen- 
dency between the sub-partilions makes parallel processing impos- 
sible. Thus, we must start the architecture design of variable block 
size ME for H.264 at the algorithmic level. 

In this paper, we modify the reference software lo let the algo- 
rithm more suilable for hardware. In Section 2, we first review the 
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Figure I :  Prediction flow in H.264 software. 

prediction flow in lM4.M. In  Section 3, we present our algorithm 
with experimental results of coding performance. Next, our archi- 
tecture, as well as the simulation results and comparison, will be 
described in Section 4 and Section 5 ,  respectively. Finally, Section 
6 gives a conclusion. 

2. PREDICTION FTOW IN H.264 SOFTWARE 

Figure I shows the prediction flow of a 16x16 macro-block (MR) 
in H.264 software. The top left 8x8 block is first processed and 
followed by the top right 8x8, bottom left 8x8, bottom right 8x8, 
and 16x16. The mode decision considers not only the sum ofabso- 
lute difference (SAD) (2-D Hadamard transformed for intra modes 
and sub-pixel ME) but also the exact cost of side information. The 
entropy coding of intra modes depends on the context produced by 
the left and top neighbors. Resides, the intra prediction of a block 
cannot get the correct predictor until the neighboring blocks are 
quantized and then reconstructed. Moreover, the motion vectors 
(MVs) are medium predicted by the left. top, and top right neigh- 
bors. The cost function can be computed only after the modes 
of neighboring blocks are determined. Obviously, the methods in 
H.264 software cannot be used i n  hardware implementation be- 
cause of the inevitable sequential processing resulted from the data 
dependency of neighboring blocks. The main problem comes from 
the "exact" cost of side information. In fact, i t  is the SAD. not the 
cost of side information, that dominates the total cost. It is not 
necessary to exactly calculate the cost of side information. 
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Figure 2: Modified prediction Row. 
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Figure 3: Overlapped search range of adjacent MBs. Each square 
is 16x16 and assume search range is [-16, +16]. 

3. PROPOSED HARDWARE-ORIENTED ALGORITHM 

Figure 2 shows the proposed hardware-oriented prediction Row. 
Full search ME is performed at integer search positions and s u b  
pixel refinement is next executed. The search range center is deter- 
mined by Ihe MV predictor in H.264 software. but we use (0.0) as 
center in order to share the overlapped search area of adjacent MBs 
and reduce the memory transfer from external RAM to on-chip 
SRAM, as shown in Fig. 3. During integer-pixel ME, we compute 
the SAD of 41 blocks without MV cost. Next, the sub-pixel re- 
finement is performed around the best integer search position of 
41 blocks. At the refinement stage, the MV cost is considered. 
However, we do not use the exact cost but an approximation. The 
exact MV predictor is replaced by the medium of the MVs of the 
top left, top, and top right MB for all kinds of sub-blocks, as shown 
in Fig. 4. For example, the exact MV cost of the 4x4 C22 block is 
related to the MVs of C12, C13, and CZI. During the ME phase, 
we change the MV predictors of all the 41 blocks lo the medium of 
MVO, MVI, and MVZ in order to facilitate the parallel processing 
of the 41 blocks. Of course after the mode decision is finished, the 
entropy coding module must calculate the exact MV predictors in 
the sequential order defined by standard, but this will not cause the 
processing bottleneck. As for the intra prediction, we use origi- 
nal frame data, instead of the reconstructed pixels of neighboring 
blocks, as predictors. At high bit-rates. the original frame pixels 
are very close to the reconstructed pixels. so the mode decision is 
still correct. At low bit-rates, the differences may become signif- 
icant. We proposed an error term to model the differences so that 
the mode decision will not go wrong. The readers can refer to [3] 
for more details. 

The experimental results of our modifications are shown in 
Fig. 5 The test conditions are I-P-P-P-P-P-P. ..,one reference frame, 
CAVLC, low-complexity mode decision, search range [-16, +16], 

Figure 4: MV predictor used for the 41 blocks in current MB dur- 
ing the ME phase. 

Figure 5 :  The rate distortion curves of various standard sequences 
generated by JM4.0d and our modified software. 

Figure 6: (a) Number of intra MBs V.S. frame; (b) Number of bits 
required V.S. frame. 
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Figure 7: Proposed architecture for integer ME. 

and Hadamard transformopened. Six standard sequences are tested 
from low bit-rates to high bit-rates. Our modifications result in al- 
most no PSNR degradation except for Stefan. This is because the 
true motion vectors of Stefan from frame #I75 to #I95 and from 
frame #230 to a 8 0  are larger than the search range. Here, we can 
see the significant gain when the search range center of a MB is 
located at the MV predictor. Nevertheless, as we stated before, if 
we located the search range center at (0, O ) ,  take search range of 
1-16, +I61 as an example, the memory transfer of the overlapped 
2/3 search area from the external RAM lo on-chip SRAM can be 
saved for adjacent MBs. Therefore, in the view paint of hardware 
engineers, we suggest to increase the search range to [-24, t241 or 
larger if the extra cost of on-chip SRAM is affordable. Note that 
in this case, the saving of system bus bandwidth is 75% because 
there are 314 overlapped search area for two adjacent MBs. If the 
design target is low cost, we suggest to solve this problem at the 
algorithmic level. That is, we can adjust the search range center 
by the number of intra MBs in the previous frame. If the t ~ e  MVs 
are beyond the search range, many MBs will bc intra-coded. We 
can observe this situation in Fig. 6. If the number of intra MBs 
in previous frame is smaller than a threshold, we can use (0.0) as 
search range center and reuse the overlapped search area. Other- 
wise, we can reload the whole search area that are centered at the 
MV predictor if the real-time requirements still can be achieved. 

4. HARDWARE ARCHITECTURE 

I n  this section, we will describe our architecture for the integer ME 
module, which is the most computationally intensive part in the en- 
coder. Full search scheme is adopted because of its simplicity and 
regularity. The SADs of the 41 blocks in a search position are com- 
puted in parallel in one clock cycle. Our architecture is illustrated 
in Fig. 7. Each circle stands for a processing element (PE). Each 
8-bit pixel in the current MB is stored in the corresponding PE. 

In each cycle, 16x1 8-bit search area pixels are inputted, and each 
pixel is broadcasted to 1x16 PES. Every PE computes the absolute 
difference between the current MB pixel and the search area pixel. 
Each rectangle that contains 4x1 PES is responsible for calculating 
the sum of 4x1 absolute differences. The 4x1 sum is then passed 
to the right. The rectangle shaded with slash lines adds the 4x1 
sum from its left side and the result from top. The added result is 
latched in the register. The rest small rectangles are registers and 
are used as delay lines. In this way. the sixteen 4x4 SADs can be 
computed in one cycle. The eight 8x4 SADs, eight 4x8 SADs, four 
8x8 SADs, two 16x8 SADs, two 8x16 SADs, and one 16x16 SAD 
can also be easily computed in the same cycle by an adder tree. 

An example of the detailed data flow is shown in Fig. 8. As- 
sume the search range is [-16, +16], the search area is 48x48, and 
each square stands for 16x16 search area. After the current MB 
are loaded into each PE, 16x1 search area pixels are inputted in 
each cycle. At cycle 0, the left 16x1 pixels on the row 0 in the 
search area are inputted. Then, the left 16x1 pixels on row 1 are 
inputted at cycle I ,  and go on. At cycle 15, all the candidate block 
data of search position (-16, -16) have been broadcasted to the PE 
array, and the SADs of 41 blocks at search position (-16, -16) are 
calculated in parallel. The SADs of search position (-16, -15) - 
(-16, +16) will be available at cycle 16 to 47, respectively. The 
rest search positions can be traced by analogy. In order to output 
the 16x1 pixels in parallel. we have to store the search area data in 
different 16 on-chip SRAM modules. 

As you can see, the utilization of the previous data Row cannot 
achieve 100%. When the search position is changed in the hod- 
zontal direction, extra 15 cycles are required to load the candidate 
block data. The advanced data Row is shown in Fig. 9. Now the 
PE array needs two ports of 16x1 search area data. The top 48x32 
search area data are stored in 16 on-chip SRAM modules, and the 
bottom 48x16 search area are stored in another 16 on-chip SRAM 
modules so that 32 search area pixels can be outputted in one cycle. 
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Cycle 0 Cycle 15 Cycle 16 - 47 Cycle 48 - 96 Cycle 1535. 1583 

Figure 8: Basic data flow. 

Cycle 0 . 32 Cycle 33 Cycle 34 - 47 Cycle 48-65 Cycle 66-80 

Figure IO: Chip layout. 

Figure 9: Advanced data flow. 

At cycle 0 to 32, the new data flow is the same as the previous one. 
At cycle 33. not only the original 16x1 pixels in Fig. 8 but also 
the additional 16x1 pixels (at cycle 48 of the previous flow) are in- 
putted to the PE array. At this time, the 16x1 PES on row 0 (the top 
16x1 PES in Fig. 7) should choose the new additional 16x1 pixels 
while the rest 16x15 PES on row 1-15 should choose the original 
16x1 data. At cycle 34 to 47, the SADs of search positions (-16. 
+2) - (-16, +16) are computed, and in the mean time, the search 
area data required for search position (-15, -16) are also inputted 
to the PE array. During cycle 33-47, the 16x1 PES on each row 
should select the proper 16x1 search area data in order to gel the 
correct results. In this way, when the search position is changed in 
the horizontal position. no bubble cycles exist so that the through- 
put can be increased. When ping-pong mode current MB buffers 
are implemented. the utilization is 100%. and the required cycles 
for each MB is 1089. In sum, our architecture is a 2-D systolic 
array with I-D data broadcasting and I-D partial result reuse (4x1 
SADs). Sixteen 4x4 SADs are generated by the PE array, and a 
parallel adder tree computes the rest SADs of larger block sizes. 

S. IMPLEMENTATION 

Our design goal is listed as follows: 720x480 frame size, 30 frames 
per second, search range [-24, +231 in the horizontal direction and 
(-16, +I51 in the vertical direction. Our design is described by 
Vcrilog HDL and synthesized by SYNOPSYS Design Analyzer 
with AVANT! 0.35um lP4M cell library. The backend tool we 
used is CADENCE Silicon Ensemble, 

Figure 10 shows our chip layout. We did not use ping-pong 
mode current ME buffers in order to save chip area. Therefore, 
some extra cycles are needed to load the current MB data. The 
utilization of the PE array is 97% and the required frequency is 
64.1 IMHz. The critical path constraint is set to 15ns. We use 
sixteen 128x8 SRAMs to store the upper 64x32 search area data 
and another sixteen 64x8 SRAMs to store the bottom 64x16 search 
area dam The chip specifications are shown in Table 1. The total 
gate count is about 106K. The PE array requires 64K gates, the 
current MB buffer requires 15K gates, and the rest gates are spent 
on the 41 comparators to find the minimum SADs, registers to hold 
the minimum SADs and corresponding MVs, and control circuits. 

Table I :  Chip Specifications. 

Process TSMC IP4M 0.35um 
Area 5,056 um x 5,056 um 
Package 128 CQFT 
On-chip memory 24.576 bits 
Fate count 105,575 
Maximum frequency 66.67 MHz 
Power consumption 
Search range 
Processing capability 

737.32 mW @ 66.67 MHz 
horizontal [-24, +23]. vertical [-16. +IS] 
720x480 @ 30 Hz 

6. CONCLUSION 

We proposed a hardware architecture of variable block size motion 
estimation dedicated for H.264. The architecture design begins 
with the analysis of the reference software. We removed the data 
dependencies that prevents parallel processing and MB pipelining. 
The architecture contains a PE array, which is a 2-D systolic ar- 
ray with I - D  data broadcasting and I - D  partial result reuse, and a 
parallel adder tree to generate the SAD of larger block sizes based 
on 4x4 SADs. Our memory access scheme can result in 100% uti- 
lization of PE array. Real-time applications of 720x480 frame at 
30Hz can be achieved only under 64.1 IMHz. 

7. FUTURE WORK 

We are now establishing the cell-based design flow of 0.25um 
technology. We plan to integrate the current design together with 
quarter-pixel ME and intra prediction using 0.25 um technology. 
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